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This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid
controllers update two filters individually according to the filtered-reference least mean squares (FxLMS)
algorithm. Because this algorithm was derived for feedforward control, it does not take into account the
presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight
vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this
formulation, a single weight vector is updated rather than two individually. An internal model structure is
assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard
FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some
simulations are provided to highlight the advantages of using the full gradient in the weight vector update
rather than the approximation.
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1. INTRODUCTION

Active noise & vibration control (ANVC) systems composed of feedforward and feedback con-
trollers, referred to in the literature as hybrid controllers, have been shown to offer performance
benefits over solely feedforward or feedback architectures.1, 2 The performance of a feedforward
control system depends on the availability of a reference signal that is correlated with the dis-
turbance. If one is not available, or the coherence between the two is poor, the performance of
the feedforward controller will deteriorate. In contrast, feedback control systems do not require a
reference signal. Instead, the signal measured by the error sensor is used to generate the control
signal. The performance of feedback ANVC systems is mainly influenced by the bandwidth of the
disturbance and the delays associated with the plant dynamics.3 In general, hybrid controllers are
beneficial when the disturbance contains signal components that are not present in the reference
signal. The feedforward controller aims to minimize the signal that is correlated with the reference
signal while the feedback system simultaneously works to minimize the uncorrelated disturbance.4

While hybrid ANVC systems are particularly useful in certain scenarios, they have issues that
need to be considered. When modeling error is present and the cost function is the mean square
error (MSE), which is common in ANVC, the performance surface is no longer a convex function
of the control filter coefficients. Therefore, if standard adaptive algorithms such as the filtered-
reference least mean squares (FxLMS) are used to adapt the coefficients, it is possible that the
global minimum might not be reached. The other main issue is that the feedback loop has the
potential to cause instabilities. To remedy this, it is common to update the filter conservatively by
including a leakage term in the adaptation equation,3 which results in decreased convergence speed
and degraded steady state performance. Identifying a sufficient leakage term is also, in general, a
trial and error procedure.

This paper aims to alleviate the problems associated with a nonconvex performance surface
such as local minima and poor convergence behavior. The ANVC algorithm considered in this
paper is based on the method of steepest descent. This method seeks the minimum of a given
cost function based on an estimate of the local gradient. The main contribution of the paper is a
derivation of the update law for an adaptive hybrid controller employing internal model control
(IMC). IMC uses an internal model of the plant to transform a feedback problem into a setting
where feedforward control techniques can be applied.5 The derivation shows that the gradient used
in feedback or hybrid FxLMS is an approximation and how it can be obtained by simplifying the
full gradient expression.

The derivation of the update law for a hybrid controller is based on adaptive infinite impulse
response (IIR) filtering theory. The structure of the derivation is similar to adaptive IIR filtering
algorithm derivations discussed by Shynk.6 The idea is that a hybrid controller can be viewed as a
single IIR filter with the feedforward part (numerator) being driven by the reference signal and the
feedback part (denominator) being driven by the estimated disturbance signal. Most adaptive IIR
filtering algorithms are used in system identification applications where the desired signal is known
a priori. The equation error formulation takes advantage of this to minimize a cost function that is
convex in the filter coefficients. Since in a control setting the desired signal is the external distur-
bance, and hence unknown, this approach cannot be used. Therefore, the output error formulation
is used. This results in an error signal that is a nonlinear function of the filter coefficients.3 The
gradient of the resulting cost function, which is used in the update law, requires the computation
of a recursive filter output that is a function of the modeling error and the feedback filter. A more
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Figure 1: Block diagram of hybrid active noise control system.

computationally efficient version of the full gradient algorithm, which will be referred to as the
simplified gradient algorithm, is then derived. It is then shown how FxLMS can be derived from
either of these algorithms based on the assumption of zero modeling error.

A similar approach, but for adaptive feedforward control using IIR filters, was taken by Craw-
ford and Stewart7 Similar to this paper, they derive a full gradient and a simplified gradient algo-
rithm following the derivation presented by Shynk.6 The necessary simplifications to arrive at the
filtered-u algorithm8 are also discussed. In this paper, the additional term in the gradient expression
is due to modeling errors in an IMC configuration whereas in Crawford and Stewart’s approach,7

the extra terms result from the presence of acoustic feedback.
The paper is organized as follows. In Section II, the adaptive algorithm is derived and the

update law using the full gradient is presented. Simplifications are then made that result in a
simplified gradient algorithm and the FxLMS algorithm. Section III provides simulation results
to illustrate the performance differences between the simplified gradient and FxLMS algorithms.
Section IV concludes the paper.

2. HYBRID CONTROL

A. FULL GRADIENT ALGORITHM

Consider the block diagram of Figure 1. This represents a standard hybrid control architecture.
The plant and plant model are assumed linear time-invariant and denoted G(z) and Ĝ(z), respec-
tively. The feedforward control filter B(z) is driven by the reference signal x(n). The feedback
controller uses an internal model of the plant to generate a reference signal d̂(n) that drives the
feedback control filter A(z). Each control filter is adapted to minimize the error signal e(n). If
A(z) and B(z) are parameterized (FIR) filters, the system can be viewed as a single adaptive IIR
filter with the feedforward part being driven by the reference signal and the feedback part being
driven by the estimated disturbance signal. The control signal generated by the controller can thus
be written

y(n) =
N−1∑
m=1

am(n)d̂(n−m) +
M−1∑
m=0

bm(n)x(n−m), (1)

where am(n) and bm(n) are the coefficients of the feedback and feedforward filters, respectively.
The feedback term is summed from m = 1 to represent the inherent delay in estimating the distur-



bance signal. This can be written as the inner product

y(n) = φT (n)θ(n), (2)

where the vector of reference signals is defined as

φ(n) =
[
d̂(n− 1), · · · , d̂(n−N + 1), x(n), · · · , x(n−M + 1)

]T
, (3)

and the vector of adjustable filter coefficients is

θ(n) = [a1(n), · · · , aN−1(n), b0(n), · · · , bM−1(n)]T . (4)

The following adaptive algorithm, based on Widrow’s LMS algorithm,9 employs the method of
steepest descent. The idea is to adapt the control filter coefficients in the negative direction of the
local gradient of the cost function. The general form of the update equation takes the form

θ(n+ 1) = θ(n) + α
(
−∇θ(n)J

)
, (5)

where α is the learning rate, J is the cost function, and ∇θ(n) denotes the partial derivative with
respect to the current values of each filter coefficient. The cost function is the mean square error
(MSE)

J =
1

2
E
[
e2(n)

]
. (6)

Because the above cost function requires the expected value of the MSE, it cannot be evaluated
for online adaptation. As an approximation, it is replaced by a stochastic estimate J(n) = 1

2
e2(n).

Observing that the error signal can be written as e(n) = d(n)+G(z)y(n), the gradient is evaluated
as

∇θ(n)J(n) = e(n)∇θ(n) [G(z)y(n)]

= e(n)G(z)∇θ(n) [y(n)] . (7)

The filtering by G(z) can be pulled outside of the differentiation because the plant is independent
of the filter coefficients. Evaluating the gradient term in (7) for a single filter coefficient gives

∂y(n)

∂ak(n)
= d̂(n− k) +

N−1∑
m=1

am(n)
∂d̂(n−m)

∂ak(n)
(8)

∂y(n)

∂bk(n)
= x(n− k) +

N−1∑
m=1

am(n)
∂d̂(n−m)

∂bk(n)
. (9)

These equations result from applying the chain rule to (2). The second terms in (8)-(9) result
from the fact that the signal driving the feedback filter, d̂(n) is not independent of the control filter
coefficients. Computation of these derivatives is problematic because of their own recursive nature.
Due to the presence of the feedback path, the past values of d̂(n) depend on past values of ak(n)
and bk(n). With the goal of forming a proper gradient filter, it is necessary to express (8)-(9) in
a form where the output is a filtered version of previous inputs and outputs. Because the partial
derivatives on the right hand side are taken with respect to the current filter coefficient values, there



is no recursion. A common assumption in adaptive IIR filtering is that for slow adaptation (small
α), θ(n) ≈ θ(n − 1) ≈ · · · ≈ θ(n − N + 1).6 Here it is assumed that the adaptation is occurring
slowly compared to the timescales (i.e., impulse response time) of the plant dynamics, which is an
assumption made in the derivation of the FxLMS algorithm.3 In this case, (8)-(9) become

∂y(n)

∂ak(n)
= d̂(n− k) +

N−1∑
m=1

am(n)
∂d̂(n−m)

∂ak(n−m)
(10)

∂y(n)

∂bk(n)
= x(n− k) +

N−1∑
m=1

am(n)
∂d̂(n−m)

∂bk(n−m)
. (11)

To express the gradient in a true recursive form, observe that

d̂(n−m) = e(n−m)− Ĝ(z)y(n−m)

= d(n−m) + ∆G(z)y(n−m), (12)

where ∆G(z) = G(z) − Ĝ(z). Noting that ∆G(z) and d(n − m) are independent of the filter
coefficients, (10)-(11) become

∂y(n)

∂ak(n)
= d̂(n− k) + ∆G(z)

N−1∑
m=1

am(n)
∂y(n−m)

∂ak(n−m)
(13)

∂y(n)

∂bk(n)
= x(n− k) + ∆G(z)

N−1∑
m=1

am(n)
∂y(n−m)

∂bk(n−m)
, (14)

which are recursive in the partial derivatives. For convenience, define

uk(n) =
∂y(n)

∂ak(n)
, vk(n) =

∂y(n)

∂bk(n)
, (15)

so that (13)-(14) can be written

uk(n) = d̂(n− k) + ∆G(z)
N−1∑
m=1

am(n)uk(n−m) (16)

vk(n) = x(n− k) + ∆G(z)
N−1∑
m=1

am(n)vk(n−m). (17)

Equations (16)-(17) are expressed in form of recursive filters as

uk(n) =

(
1

1−∆G(z)A(z)

)
d̂(n− k) (18)

vk(n) =

(
1

1−∆G(z)A(z)

)
x(n− k), (19)

where
A(z) = a1(n)z−1 + · · ·+ aN−1(n)z−N+1. (20)



Note that there are no restrictions on the structure of ∆G(z); it may be parameterized as a scalar,
an FIR, or an IIR filter.

It is helpful to form a vector of filtered reference signals. This is done by filtering each element
uk(n) and vk(n) through the plant model. This is written

ukf (n) = Ĝ(z)uk(n) k = 1, · · · , N − 1 (21)

vkf (n) = Ĝ(z)vk(n) k = 0, · · · ,M − 1. (22)

The vector of filtered reference signals is then written as

φf (n) =
[
u1f (n), · · · , uN−1f (n), v0f (n), · · · , vM−1f (n)

]
. (23)

The gradient in (7) can now be written as

∇θ(n)J(n) = e(n)φf (n). (24)

The resulting update equation is

θ(n+ 1) = θ(n)− αφf (n)e(n). (25)

The filtered reference signals are generated using the effective plant response, which takes into
account the presence of the feedback path. Taking the feedback path into account directly in the
adaptation equation allows the algorithm to converge faster than gradient descent algorithms that
ignore it such as feedback and hybrid FxLMS. The only additional computations necessary to
calculate the proper gradient involve the recursive filtering by 1−∆G(z)A(z).

It is important to differentiate between adaptive algorithm divergence and feedback loop in-
stabilities.10 The inclusion of the recursive term in the gradient calculation does not prevent the
feedback path from going unstable if the loop gain is greater than unity at 180◦ crossovers. Instead,
it essentially gives the adaptive algorithm a more accurate estimate of the performance surface of
which it is navigating. If the filter coefficients are adapted into a region that destabilizes the feed-
back loop, the controller becomes unstable and the MSE will diverge.

While the formulation thus far has been for a hybrid control structure, it should be emphasized
that this is also applicable to feedback control. As long as the signal driving the adaptive filter is a
function of the adaptive filter itself, this approach can be taken.

B. SIMPLIFIED GRADIENT ALGORITHM

The summation terms (16)-(17) are each filtered by the modeling error, which requires com-
puting the output of 2(M+N−1) filters. The full expressions for uk(n) and vk(n) are then filtered
through the plant model as in (21)-(22), which requires computing the output of M +N − 1 more
filters. The full gradient algorithm thus requires computation of 3(M + N − 1) filter outputs,
which can be cumbersome if the control filters contain a large number of coefficients. Rather than
computing each filter output, it is possible to calculate only the initial gradient terms (u1f (n) and
v0f (n)) and approximate the remaining terms as delayed versions of the initial gradients. This is
another common simplifying assumption in adaptive IIR filtering that results in negligible perfor-
mance loss6 in most situations. The initial gradient terms are calculated as

u1(n) = d̂(n− 1) + ∆G(z)
N−1∑
m=1

am(n)u1(n−m) (26)



v0(n) = x(n) + ∆G(z)
N−1∑
m=1

am(n)v0(n−m). (27)

Each of these terms are then filtered through the plant model

u1f (n) = Ĝ(z)u1(n) (28)

v0f (n) = Ĝ(z)v0(n). (29)

The remaining terms are approximated as

ukf (n) = u1f (n− k) k = 2, · · · , N − 1 (30)
vkf (n) = v0f (n− k) k = 1, · · · ,M − 1. (31)

With this simplification, the outputs of only six filters are computed to form the gradients at each
iteration. This approximation is valid under the previously made assumption of slow adaptation.

C. FXLMS ALGORITHM

The FxLMS algorithm can be derived quite simply from the formulation presented above. If a
perfect plant model is assumed, then ∆G(z) = 0. Then the gradient is simply delayed versions of
the reference signals such that

uk(n) = d̂(n− k) (32)

vk(n) = x(n− k). (33)

The filtered reference signals used in the algorithm are these signals filtered through the plant
model. In vector form, this is

φf (n) = Ĝ(z)φ(n). (34)

The update equation for the FxLMS algorithm is then

θ(n+ 1) = θ(n)− αφf (n)e(n). (35)

This is equivalent to the standard formulation of the FxLMS algorithm for a hybrid controller,
which updates the feedback and feedforward control filters individually.

The feedback FxLMS algorithm can be viewed as analogous to the pseudolinear regression
(PLR) algorithm in adaptive IIR filtering.11 Both algorithms neglect the recursive filtering in the
calculation of the gradient. The PLR algorithm has a self-stabilizing property such that when
system poles migrate outside of the unit circle the adaptation naturally forces them back inside.6

This behavior can also be seen in adaptive feedback and hybrid systems employing the FxLMS
algorithm.

D. QUANTIFICATION OF MODELING ERROR

The complete gradient expression ((18)-(19)) has been shown to be a function of the plant
modeling error ∆G(z). The question of how to characterize this quantity then naturally arises. As
was shown in the previous section, if no modeling error exists (never the case in practice), the full
gradient algorithm reduces to FxLMS. To calculate the precise instantaneous gradient in (21)-(22),



it would be necessary to have exact knowledge of the modeling error. If the exact modeling error
was known, it would make more sense to use that knowledge to generate a more accurate plant
model and then use the simpler FxLMS algorithm to adapt the control filter. A practical solution
is to design a ∆G(z) that offers performance at least comparable (and ideally superior) to that of
FxLMS for a family of possible plants.

3. SIMULATION

It has been shown that the update equation in the feedback and hybrid FxLMS algorithm uses
an approximation of the full gradient expression. A series of simulations have been constructed to
show the performance differences in using the complete gradient as opposed to the approximation
used in FxLMS. To save on computing time, the simplified gradient algorithm ((26)-(31)) is used
in all simulations. The simplification results in almost no loss of performance.

In each simulation, the reference signal is a 100 Hz sine wave. The disturbance is the reference
signal filtered through the primary path plus a 140 Hz sine wave (i.e., an uncorrelated disturbance).
The primary path from the reference signal to the error sensor is a five sample delay with unity
magnitude. A low level broadband signal was added to the disturbance to simulate measurement
noise. In all simulations, the sample rate was set to 1 kHz. The plant model is represented by the
following FIR filter

Ĝ(z) = − 0.03 + 0.3z−1 + 1.4z−2 + 0.9z−3 − 0.4z−4 (36)
− 1.1z−5 − 0.2z−6 + 0.3z−7 + 0.07z−8,

which is representative of a simple ANVC plant. It is assumed that the plant is subject to a multi-
plicative uncertainty ∆m(jω), where

G(jω) = Ĝ(jω) (1 + ∆m(jω)) (37)

and that the uncertainty is bounded by |∆m(jω)| ≤ 1
8
. In other words, the magnitude of the plant

is expected to fall in the range

7

8
Ĝ(jω) ≤ G(jω) ≤ 9

8
Ĝ(jω). (38)

Therefore, for the simulations, it was assumed that the modeling error ∆G(jω) had a magnitude
of |1

8
Ĝ(jω)| and zero phase. The MATLAB function invfreqz() was then used to generate a cor-

responding FIR filter that approximated the desired frequency response. This FIR filter is used in
the simplified gradient algorithm in all subsequent simulations.

To compare the performance of the simplified gradient algorithm and FxLMS, three separate
simulations are presented. In the first two cases, G(jω) = 3

4
Ĝ(jω) and G(jω) = 5

4
Ĝ(jω). In these

cases, the multiplicative error is 1
4

and −1
4
, respectively. Both cases exceed the bounds set in (38).

In the final simulation, G(z) = Ĝ(z).
The control filter consists of two feedback (N = 3) and two feedforward (M = 2) coefficients.

In general, only two filter weights should be necessary for the suppression of a tone. In each
simulation, the step size was adjusted such that the fastest convergence for each algorithm was
achieved. Any further increase caused instability or oscillatory behavior in the MSE signal that



led to a longer convergence time. The results are shown in Figs. (2)-(4). For both cases where the
plant model is imperfect, the simplified gradient algorithm converges faster than FxLMS due to a
more accurate gradient estimate in the update equation. In the nominal case, the system is entirely
feedforward and the gradient used in the FxLMS update is correct. Therefore, it is expected that
FxLMS will converge faster than the simplified gradient algorithm. This is confirmed by the results
in Fig. 4.

Figure 2: Mean squared error signal in the case of modeling errors: G(z) = 3
4
Ĝ(z).

Figure 3: Mean squared error signal in the case of modeling errors: G(z) = 5
4
Ĝ(z).

4. CONCLUSIONS

A solution to adaptive internal model control based on the method of steepest descent has been
derived that makes no upfront assumptions regarding the accuracy of the plant model. The only
assumption made was slow control filter adaptation. This algorithm was then simplified into a more
computationally efficient form. The update law employs a gradient that was shown to be a function
of the plant modeling error. From the existing formulation, the FxLMS algorithm was then derived



Figure 4: Mean squared error signal in the case of no modeling errors: G(z) = Ĝ(z).

based on the assumption of zero modeling error. Simulation results show that the complete update
law is capable of converging faster than FxLMS when an estimate of the plant modeling error is
available. In practice, we have found that the FxLMS algorithm provides sufficient performance in
many situations. Nonetheless, this approach to the derivation of FxLMS provides helpful insight
into the algorithm’s behavior when applied in a hybrid or feedback control setting.
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